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ABSTRACT

Motivation: The development of better tests to detect cancer in its
earliest stages is one of the most sought-after goals in medicine.
Especially important are minimally invasive tests that require only
blood or urine samples. By profiling oligosaccharides cleaved from
glycosylated proteins shed by tumor cells into the blood stream,
we hope to determine glycan profiles that will help identify cancer
patients using a simple blood test. The data in this article were
generated using matrix-assisted laser desorption/ionization Fourier
transform ion cyclotron resonance mass spectrometry (MALDI FT-
ICR MS). We have developed novel methods for analyzing this type
of mass spectrometry data and applied it to eight datasets from three
different types of cancer (breast, ovarian and prostate).
Results: The techniques we have developed appear to be effective
in the analysis of MALDI FT-ICR MS data. We found significant
differences between control and cancer groups in all eight datasets,
including two structurally related compounds that were found to be
significantly different between control and cancer groups in all three
types of cancer studied.
Availability: The software used to perform the analysis described in
this article is available in the form of an R package called FTICRMS,
version 0.6, either from the Comprehensive R Archive Network
(http://www.r-project.org/) or from the first author.
Contact: barkda@wald.ucdavis.edu

1 INTRODUCTION
The development of better tests to detect cancer in its earliest
stages is one of the most sought-after goals in medicine. Especially
important are minimally invasive tests that require only blood
or urine samples. By profiling oligosaccharides cleaved from
glycosylated proteins shed by tumor cells into the blood stream,
we hope to determine glycan profiles that will help identify cancer
patients using a simple blood test.

∗To whom correspondence should be addressed.

Glycan profiling has significant advantages over traditional
peptide or protein profiling. Focusing on glycosylated proteins
significantly reduces the potential number of biomarkers that
need to be examined (Villanueva et al., 2005). The glycosylated
protein profile has been shown to be different for cancerous
cells and normal ones—see, for example, Brockhausen (1999);
Dall’Olio et al. (2001); Gorelik et al. (2001); Hollingsworth and
Swanson (2004); Malykh et al. (2001); Varki (2001); Yamori et al.
(1987)—and glycosylation is extremely sensitive to the biochemical
environment (Dennis et al., 1999).

The authors generated the data in this article using matrix-
assisted laser desorption/ionization Fourier transform ion cyclotron
resonance mass spectrometry (MALDI FT-ICR MS). In this
technique, the serum sample (the analyte) is mixed with a chemical
that absorbs light at the wavelength of the laser (the matrix) in a
solution of organic solvent and water. The resulting solution is then
spotted on a MALDI plate and the solvent is allowed to evaporate,
leaving behind the matrix and the analyte. A laser is fired at the
MALDI plate and is absorbed by the matrix. The matrix breaks
apart and transfers a charge to the analyte, creating the ions of
interest (with fewer fragments than would be created by direct
ablation of the analyte with a laser). Ions from multiple laser shots
are accumulated in a hexapole and then guided with a quadrupole
ion guide into the ICR cell where the ions cyclotron in a magnetic
field. While in the cell, the ions are excited and ion frequencies
are measured. The acceleration, and therefore the frequency, of a
charged particle is determined solely by its mass-to-charge ratio.
Using Fourier analysis, the frequencies can be resolved into a sum
of pure sinusoidal curves with given frequencies and amplitudes.
The frequencies correspond to the mass-to-charge ratios and the
amplitudes correspond to the concentrations of the compounds in
the analyte. FT-ICR MS is characterized by high mass resolution,
with separation thresholds on the order of 10−3 Da or better (Herbert
and Johnstone, 2003; Park and Lebrilla, 2005).

The mass spectra analyzed in this article were recorded on
an external source MALDI FT-ICR instrument (HiResMALDI,
IonSpec Corporation, Irvine, CA, USA) equipped with a 7.0 T
superconducting magnet and a pulsed Nd:YAG laser 355 nm.
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Table 1. Summary of number of samples analyzed

Cancer type Subjects 10% fraction 20% fraction 40% fraction

Samples Replicates Spectra Samples Replicates Spectra Samples Replicates Spectra

Breast 39/39 38/35 3 219 36/37 3 219 Not tested
Ovarian 47/50/98 47/50/98 1 195 46/50/95 1 191 47/50/97 1 194
Prostate 10/10 10/10 6–8 125 10/10 5–7 127 10/10 6 120

Slashes indicate normal/cancer cases for prostate and breast cancer samples and normal/borderline/cancer cases for ovarian cancer samples. See Section 1.

A solution of 2,5-dihydroxybenzoic acid was used as the matrix
[0.05 mg/µL in 50% acetonitrile (AcN)]. For negative mode
analysis, 1 µL of oligosaccharide solution was applied to the MALDI
probe followed by 1 µL of the appropriate matrix solution. The
sample was dried under vacuum and subjected to mass spectrometric
analysis. For positive mode analysis, the same sample preparation
was applied with the addition of 1 µL 0.01 M NaCl in 50% AcN to
the matrix–analyte mixture to enrich the Na+ content and produce
primarily sodiated species.

Previous analyses such as An et al. (2006) have focused on a
simple presence/absence criterion to determine differences in glycan
profiles between cancer patients and normal subjects, sometimes
combined with receiver-operating characteristic curves (Leiserowitz
et al., 2008). In this article, we quantify differences in levels of
oligosaccharides while controlling for differences in age in order to
determine differences between cancer and control groups.

We apply our statistical methods to three datasets. The first
consists of 20 men: 10 diagnosed with prostate cancer under active
surveillance with a prostate specific antigen (PSA) score of at least
5.0, and 10 control subjects who have had their prostates removed
and have a negative PSA. The second consists of 198 women: 99
classified as having ovarian cancer, 51 classified as having low
malignant potential tumors (‘borderline’ tumors) and 48 classified
as being cancer free. The third consists of 78 women: 39 with breast
cancer and 39 normal controls. For each subject, a serum sample
was obtained and processed to release the glycans, then separated
into three fractions, using either a 10%, 20% or 40% solution of
AcN in water (see An et al., 2006 for details of the procedures).
The 10% and 20% fractions for each of the three cancers were
tested with the mass spectrometer in positive mode, and the 40%
fractions for the prostate and ovarian cancer samples were tested
with the mass spectrometer in negative mode. Each sample in the
ovarian cancer set was run through the mass spectrometer once.
A total of five spectra did not register and ages were not available
for three subjects (one in each cancer classification); this left 195
spectra for the 10% fraction, 191 spectra for the 20% fraction and
194 spectra for the 40% fraction. Each sample in the prostate cancer
set was separated into between 5 and 8 replicates and run through the
mass spectrometer, resulting in 125 spectra for the 10% fraction, 127
spectra for the 20% fraction and 120 spectra for the 40% fraction.
Sixty-eight samples in the breast cancer set were separated into both
10% and 20% fractions; five each were separated into only one of the
two fractions. Each of the resulting samples was done in triplicate,
resulting in 219 spectra for each fraction (see Table 1 for a summary
of these numbers).

Written informed consent was obtained from each subject, and
the protocols were IRB-approved.

2 METHODS
We analyze MALDI FT-ICR MS data in six steps: baseline correction, data
transformation, peak location, peak selection, normalization and statistical
analysis.

2.1 Baseline correction
In order to compare different areas of the spectra, we need to have a flat
baseline. To do this, we locate the baseline by a method developed for NMR
data by Xi and Rocke (2008). For a spectrum with n data points (mi,yi), where
mi is the mass and yi is the height of the i-th data point in the spectrum, define
the following score function F:

F({bi})=
n∑

i=1

bi −A1

n−1∑
i=2

(bi−1 −2bi +bi+1)2 −A2

n∑
i=1

[(bi −yi)+]2, (1)

where z+ ≡max{z,0}, bi represents the value of the baseline at the i-th data
point, and A1 and A2 are constants to be determined. We maximize this score
function over all possible values of {bi} to find the baseline.1

The first term in F represents the overall height of the baseline. The
last term is negative only when the baseline is above the data points, so it
counteracts the first term and helps ensure that the baseline goes through the
middle of the data. The second term is a measure of the curvature of the
baseline, so maximizing F will prevent the baseline from curving upward
too sharply in areas with peaks.

Xi and Rocke show that (assuming normally distributed noise) A2 =√
2π/2σ , where σ is the standard deviation of the noise. They also show

that A1 should have the form A1 =n4A∗
1/σ for some constant A∗

1. For the
data in this article, we experimentally determined the best value of A∗

1 to be
approximately 1.1×10−9.

We maximize the score function in Equation (1) by finding the gradient
and setting it equal to zero. Let 1(A) be the indicator function for the set A.
Then, for 3≤ j≤n−2, we have

∂F

∂bj
= ∂

∂bj

[ n∑
i=1

bi −A1

n−1∑
i=2

(bi−1 −2bi +bi+1)2

−A2

n∑
i=1

[(bi −yi)+]2
]

= ∂

∂bj

[
bj −A1[(bj−2 −2bj−1 +bj)

2 +(bj−1 −2bj +bj+1)2

+(bj −2bj+1 +bj+2)2]−A2[(bj −yj)+]2
]

(2)

1Note that the masses {mi} do not appear in F; the score function assumes
equally spaced data. Our masses are not equally spaced, but the masses are
not directly measured. Instead, they are derived from measured frequencies—
via m/z=a/(f −c) for certain constants a,c (Zhang et al., 2005)—and the
frequencies are equally spaced. Thus, it is appropriate to use Xi and Rocke’s
score function without modification.
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Fig. 1. The autocorrelation series (starting with lag 7) of a typical spectrum pre-baseline correction (left) and post-baseline correction (right). See Section 2.1.

=1−A1[2(bj−2 −2bj−1 +bj)−4(bj−1 −2bj +bj+1)

+2(bj −2bj+1 +bj+2)]−2A2(bj −yj)+
=1−A1[2bj−2 −8bj−1 +12bj −8bj+1 +2bj+2]

−2A2bj1(bj >yj)+2A2yj1(bj >yj).

Setting this equal to zero and solving gives us

2A1[bj−2 −4bj−1 +6bj −4bj+1 +bj+2]+2A2bj1(bj >yj)

=1+2A2yj1(bj >yj). (3)

For the boundary point j=2, the term in Equation (2) involving bj−2 does not
appear, so we end up with 5bj instead of 6bj and −2bj−1 instead of −4bj−1

(and obviously no bj−2 term) in Equation (3); and similarly for j=n−1. For
j=1, the terms in Equation (2) involving bj−1 do not appear, so we end up
with bj −2bj+1 +bj+2 replacing the quantity in brackets in Equation (3); and
similarly for j=n. Combining these gives the following linear system for
Bk+1:

2(A1M +A2Jk)Bk+1 =Yk . (4)

Here, M is a penta-diagonal matrix with values (1,5,6,6,...,6,6,5,1) on the
main diagonal, values (−2,−4,−4,...,−4,−4,−2) on the sub- and super-
diagonals and ones on the sub-sub- and super-super-diagonals; Jk is an n×n
diagonal matrix with entries

jii,k =1(bi,k >yi);
and Yk is an n×1 column vector with entries

yi,k =1+2A2yi1(bi,k >yi),

where bi,k is the i-th component of Bk . We solve Equation (4) iteratively,
starting the iteration with all the entries of B0 equal to the median of {yi}.
We stop when fewer than 0.1% of the values of 1(bi,k >yi) change from one
iteration to the next or after 30 iterations.

That this calculation is effective in identifying the baseline can be seen
by examining the autocorrelation series for a spectrum both pre- and post
baseline correction (Fig. 1). Before baseline correction, the autocorrelation
does not go to zero, reflecting the fact that the baseline is basically an
increasing function of mass. After baseline correction, the autocorrelation
does decay to zero. [Extending the autocorrelation plot a little further shows
a large (r ≈0.25) spike indicating a lag corresponding to isotopes, which
obviously have highly correlated values.]

2.2 Data transformation
With data spanning several orders of magnitude, it is often necessary to apply
a logarithmic transformation to the data before using standard statistical tests.
In this case, the baseline-adjusted data are sometimes negative, so we instead
use a shifted-log transformation:

fj(y)= log(y+cj),

where log is the natural (base e) logarithm, and cj =10−mini{y′
i}, with {y′

i}
the baseline-adjusted data for spectrum j. See Figure 2.

The initial reaction of many people when they see Figure 2 is that the final
data look worse than the raw data. It is important to remember, however, that
all of the ‘noise’ that appears in the final data is also present in the raw data—
it just is obscured by the vertical scale of the graph. By taking the logarithm,
we ensure that one peak which is orders of magnitude larger than any other
will not dominate the analysis. More importantly, in order to more closely
satisfy the assumption of constant error variance that underlies statistical
models such as ANOVA and ANCOVA, it is necessary to take logarithms of
the data. Even though the final data may look worse than the raw data from
a ‘messiness’ perspective, they are actually much better for the purpose of
statistical analysis.

2.3 Peak location
We will refer to the baseline corrected, shifted-log-transformed data as the
‘final data’. Once we have the final data, we must locate the compounds they
contain. To do this, we observe that the peaks in the final data are nearly
parabolic (Fig. 3). Thus, we determine peaks by finding five consecutive
points in the final data which, when fitted with a quadratic function by the
least-squares method, have correlation satisfying r2 ≥0.98 and a negative
coefficient for x2. Writing this in the form

hi −w−1
i (x−mi)

2 (5)

gives us an estimated mass for the peak of mi, a height for the peak of hi and
a measure of the width for the peak of wi.

The fact that the peaks are parabolic on the log scale means that
they are Gaussian on the raw scale. This is probably due to the Fourier
transformation process, which is a type of averaging. The Central Limit
Theorem then implies that the resulting averages will be approximately
normally distributed, leading to the type of peaks seen in the data. In
particular, this method of peak location will probably not be applicable to
data generated by other types of mass spectrometry (such as time-of-flight
MS).

2.4 Peak selection
Peak selection consisted of a two-step process: locating masses of interest
by finding ‘large’ peaks in each spectrum, then calculating the peak heights
for all spectra at those interesting masses. It is clear from the data that not
every fitted parabola in the final data represents a compound—for example,
in one typical prostate cancer spectrum analyzed for this article, we found
104100 nonoverlapping parabolas that satisfy the criteria in Section 2.3,
most of which were clearly in the ‘noise’ part of the spectrum. Thus, for
each individual spectrum, we calculated the center c and scale s of the points
in the spectrum using Tukey’s biweight with K =6 and only considered
so-called ‘large’ peaks—peaks which had hi ≥c+6s, where hi is the value
calculated for the peak in Equation (5). (In other words, large peaks are the
peaks which get zero weight when calculating the center and scale.)

Data coming out of the mass spectrometer are not calibrated; peaks
representing the same compound can be as far apart as 0.05 Da (or more,
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Fig. 2. Graphs of raw data and baseline-corrected, shifted-log-transformed data (the ‘final data’) for a typical spectrum. See Sections 2.1 and 2.2. The insets
show the isotope peak sequences (see Section 4) for the most abundant compound in the spectrum.

Fig. 3. A typical peak in the final data is approximately parabolic. See
Section 2.3.

depending on the technology used). The mass spectroscopists performed
a preliminary calibration to align peaks. At this stage in the analysis,

the statisticians performed a second calibration to fine-tune the alignment
by taking ‘strong’ peaks—peaks which are large in all spectra—and making
their masses agree exactly. We calibrated the remaining masses by using a
cubic interpolation spline (interpSpline from the splines package in
the R software package) based on the strong peaks.

Once we had this set of peak heights and recalibrated masses, we identified
large peaks in different spectra whose masses differed by at most 10 p.p.m.
Note that this can lead to identifying two peaks from the same spectrum;
for example, if spectrum A has peaks at 1000.01 Da and 1000.025 Da and
spectrum B has a peak at 1000.016 Da, then the peak in spectrum B would
be identified with both peaks in spectrum A, thus requiring both of the peaks
in spectrum A to be the same peak. To avoid this, we identified the peak in
spectrum B with the closer of the two peaks in spectrum A—in this case, the
one at 1000.01 Da.

Not every spectrum had a large peak for every compound, so we had to
deal with these initially nondetected peaks. We calculated peak heights for
these peaks by taking from the final data (i) the height of a fitted parabola in
the same mass range as the nonmissing data (if one was available); or (ii) the
largest height in the correct mass range (if no peak was available); or (iii) the
height at the closest mass to the nonmissing values. The result was a list of
heights for each presumed compound that had a large peak in at least one of
the spectra. This list of heights was what we used for statistical testing.

For the breast and prostate cancers data, it was also necessary to combine
the replicates for each sample into a single number for each subject. Because
of the inherent variability in the sample preparation process in MALDI MS,
any individual replicate may be missing a peak of the analyte—as an extreme
case, if there were a large clump of the matrix at the spot the laser hit, then
the entire spectrum would be based on the matrix, not the analyte. Careful
sample preparation can reduce this variability but not eliminate it entirely.
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It is therefore reasonable to assume that any peak which appears in one of
the replicates is actually in the sample, and that a reasonable way to combine
replicates is to use the maximum value (as opposed to the median or mean as
would typically be used) of each peak over the set of replicates. To confirm the
choice of the maximum, we tried combining the replicates in three additional
ways: second largest value, median and mean. These methods gave results
comparable to those obtained from using the maximum, but (as expected)
the analyses derived from them were not as sensitive.

2.5 Normalization
We tried three methods to normalize the spectra. The first was not to
normalize at all. In the second, we normalized each spectrum using the
average height of all large peaks from that spectrum. In the third, we
normalized each spectrum using the average height of the strong peaks in that
spectrum. (Simply normalizing by using the average height in each spectrum
was not tried because the average heights of the final data were nearly the
same in all spectra. Thus, such a normalization scheme would not have been
noticeably different from not normalizing at all.) For the prostate cancer
samples and the second method, we tried normalizing both before and after
combining replicates.

We normalized additively on the final data (which is roughly equivalent
to normalizing multiplicatively on the raw data). For example, in the third
method, if Hij is the height of the j-th strong peak in spectrum i for the final
data, then each height h in spectrum i would be normalized to be

hnorm =h−H̄i· +H̄·· . (6)

If there are n spectra and m strong peaks, then the values of H̄i· and H̄·· in
Equation (6) are given by Equations (7) and (8).

H̄i· = 1

m

m∑
j=1

Hij, i=1,...,n (7)

H̄·· = 1

mn

n∑
i=1

m∑
j=1

Hij . (8)

All normalization schemes we tried gave similar results in terms of the
final set of significant peaks. The results reported in this article come from
using the third normalization method described above before combining
replicates.

2.6 Statistical analysis
Since the cancer and control groups were not age matched, we used an
ANCOVA model with age as a covariate to test the effect of cancer status,
once age effects have already been taken into account. We obtained a P-value
for each compound from the F-test of the significance of cancer status given
that age was already in the model. Since we were dealing with thousands
of compounds under each scenario, we corrected for multiple testing using
the method of Benjamini and Hochberg (1995) to control the false discovery
rate (FDR) at 0.1.

The Benjamini–Hochberg method can be highly sensitive to the set of
starting P-values. Since (ideally) biomarkers should be strongly present
in at least one of the groups analyzed, we confined our attention to those
compounds which had a large peak in at least K spectra, where K was a
number to be determined. For each dataset, we calculated the set of significant
differences for all possible values of K (from one to the total number of
spectra). For the prostate cancer data, due to the relatively small sample size
(20 subjects), we used all significant peaks found with any value of K . For
the breast and ovarian cancers data, we started with all compounds that had
large peaks in at least 75% of the spectra—i.e. 165 for each fraction of the
breast cancer data and 149, 146 and 148, respectively, for the 10%, 20% and
40% fractions of the ovarian cancer data.

As a check on the P-values obtained by these methods, we ran a
permutation test in each experiment on the peaks that were found to be
significantly different to get a distribution-free estimate of the P-values.

For the breast and ovarian cancers data, we used 100 000 randomly permuted
values for the cancer status and found the fraction that gave a more extreme
test statistic than the actual covariates. For the prostate cancer data, we tried

all


20

10


/2=92378 ways of dividing the subjects into two groups.

3 RESULTS
We found only two significant results in the prostate cancer 10%
fraction data. Table 2 gives the results for the prostate cancer 20%
fraction data, which are illustrative of the results for the remaining
six datasets. The masses labeled with asterisks are known glycans;
the remaining masses could be unknown glycans, peptides, ion
fragments, etc. (For full details of the results as well as the biological
implications, see forthcoming papers by the authors.)

The permutation tests gave similar P-values to the actual tests
used. We first removed five peaks in the prostate cancer, 20%
fraction, dataset and one peak in the breast cancer, 20% fraction,
dataset that had the permutation test P-values much smaller than the
ANCOVA P-values. In each of the seven experiments that had more
than two significant results, we then fit a linear model of the form

Table 2. Masses for which cancer status is significant after adjusting for age
effects in the prostate cancer data, 20% fraction

P-value
Mass � (%) (×10−3) N

1197.408 52.37 4.016 122
1445.513 −17.89 13.509 127
1485.527∗ −44.71 6.985 127
1486.533 −46.04 6.820 127
1487.540 −45.15 14.608 127
1562.539 97.26 7.539 127
1563.545 95.87 5.587 126
1621.563 −55.80 1.610 50
1629.580 −31.98 24.070 127
1630.585 −31.31 29.937 127
1647.576∗ −46.68 1.019 127
1648.581 −48.02 0.752 127
1649.589 −49.24 1.016 127
1650.597 −50.62 0.825 127
1651.605 −41.02 5.342 127
1755.574 102.98 11.751 114
1783.607 −70.54 0.341 121
1784.614 −64.06 3.046 112
1809.629∗ −44.18 6.649 127
1810.632 −44.48 6.478 127
1811.639 −44.20 8.972 127
1812.648 −42.07 21.496 127
1815.598 141.87 16.729 126
1816.598 134.01 19.787 126
1817.601 118.78 13.636 121
1875.618 130.76 16.441 127
1876.615 115.63 22.927 126
1945.663 −60.92 2.781 95
1946.665 −55.32 7.355 82

Those marked with asterisks represent known glycans. �>0 means upregulated in the
cancer group and is roughly the percentage difference on the raw scale. P-values are not
adjusted for multiple testing. N is the number of spectra (out of 127) with a large peak
at the given mass. Horizontal lines separate presumed isotope groupings. See Section 3.
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Fig. 4. The dashed line is the line y=x. Each point represents a peak that was
declared statistically significant based on Benjamini–Hochberg with FDR 0.1
using the ANCOVA P-value (see Table 2). The five points in the lower right
(four of which represent different isotope peaks of the same compound) were
removed before calculating the regression line and correlation described in
the text. See Section 3.

P=Ca to the significant P-values, where P represents the P-value
obtained from the permutation test and a represents the P-value from
ANCOVA. For the ovarian and breast cancer sets (with their large
sample sizes), the resulting estimates for C ranged from 0.984 to
1.007 and the correlations obtained were all at least 0.9994. The
prostate cancer permutation tests were less well behaved (probably
due to the much smaller sample size), but we still obtained estimates
C =1.066 with correlation 0.9988 in the 20% fraction and C =0.930
with correlation 0.9744 in the 40% fraction. (Although the value of C
in the last case was not as close to 1 as the others, the 95% confidence
interval for C did contain 1.) Overall, this is strong evidence that the
P-values obtained from the ANCOVA model are valid. See Figure 4
for a typical scatterplot of P-values.

In addition, we found two distinct compounds (both with isotope
sequences) that were significantly different in the 20% fraction in
all three types of cancer. These are listed in Table 3.

4 DISCUSSION
The techniques we have developed appear to be effective in the
analysis of MALDI FT-ICR mass spectrometry data. The fact that
entire isotope sequences (e.g. lines 11–15 in Table 2) are significant
together and have roughly the same estimated � and P-value is a
strong indicator of the reliability of the techniques. The fact that
the permutation tests and ANCOVAs give rise to virtually identical
P-values indicates that the statistical modeling assumptions are
reasonable.

The single most interesting aspect of the analysis was the
discovery of masses that are significantly different in the 20%
fraction between cancer and control patients in all three types of

Table 3. Masses for which cancer status is significant after adjusting for age
effects for the 20% fraction in all three types of cancer studied

Mass (Da) Breast Ovarian Prostate

� (%) �B (%) �C (%) � (%)

1485.527∗ 109.67 71.27 106.06 −44.71
1486.533 112.88 73.64 110.48 −46.04
1487.540 121.13 71.31 105.07 −45.15
1809.629∗ −27.95 −22.66 −38.54 −44.18
1810.632 −28.48 −22.57 −38.69 −44.48
1811.639 −30.04 −23.15 −39.20 −44.20
1812.648 −32.73 −23.12 −40.35 −42.07

Those marked with asterisks represent known glycans. �>0 means upregulated in
cancer and is roughly the percentage difference on the raw scale. �B and �C are the
differences from borderline tumor patients and cancer patients, respectively, to normal
subjects. Horizontal lines separate presumed isotope groupings. See Section 3.

Table 4. Three related glycans and their relative levels in the 20% fractions
of each of the three types of cancer studied

Glycan Breast Ovarian Prostate

� (%) �B (%) �C (%) � (%)

Hex3HexNAc4Fuc1 109.67 71.27 106.06 −44.71
Hex4HexNAc4Fuc1 10.88 11.13 6.89 −46.68
Hex5HexNAc4Fuc1 −27.95 −22.66 −38.54 −44.18

�>0 means upregulated in cancer and is roughly the percentage difference on the
raw scale. �B and �C are the differences from borderline tumor patients and cancer
patients, respectively, to normal subjects. See Section 4.

cancer (see Table 3). The significantly different masses form two
isotope series representing known glycans (Hex3HexNAc4Fuc1 and
Hex5HexNAc4Fuc1) which are structurally related by the addition
of two hexose groups. Table 4 takes the primary peaks of those two
glycans plus the intermediate related glycan Hex4HexNAc4Fuc1
and displays the estimated differences in each of the three types of
cancer. There appears to be a difference in the responses of men and
women to cancer; note that the relative levels of the three glycans
in prostate cancer are approximately the same, while in breast and
ovarian cancers they transition from highly overexpressed to highly
underexpressed in cancer as the glycans become more massive. It
would be interesting to analyze a mixed-gender cancer set (e.g.
colon or lung cancer) to explore whether these observations are
merely coincidence or indicative of some general systemic response
to cancer.

One possibility for improving the analysis is to deal with
isotopes. Currently, we treat isotopes as separate compounds, but
by combining them into single peaks, we would undoubtedly gain
statistical power. A good example of this is illustrated in Table 5,
which comes from a previous analysis (of the prostate cancer, 20%
fraction data) which ignored age as a covariate. Note that the isotope
sequence of the peak at 1645.576 Da overlaps the isotope sequence
of the peak at 1647.576 Da, and that the compound with lower
mass is downregulated in cancer while the compound with higher
mass is upregulated. The result is that the differences tend to cancel
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Table 5. Example of isotope interference from a previous analysis of the
prostate cancer, 20% fraction data, without using age as a covariate

P-value
Mass � (%) (×10−3) N

1645.580 58.07 18.119 127
1646.586 56.51 16.372 127
1647.576∗ −37.65 3.571 127
1648.581 −38.94 2.807 127
1649.589 −40.48 3.040 127
1650.597 −41.89 2.094 127
1651.605 −35.72 3.905 127

Those marked with an asterisk represents known glycans. Isotope-detection software
initially categorized this as one long isotope sequence, although it clearly consists of
two overlapping isotope sequences. See Section 4.

each other out, so the estimated � is smaller in absolute value and
the P-value is larger for the first few isotopes in the 1647.576 Da
sequence than for the later isotopes. (The remnants of this effect can
be seen in Table 2: even though the mass at 1645.580 is no longer
significant with age as a covariate, we still get the same pattern of
effect size and P-value for the mass sequence starting at 1647.576.)
In other datasets analyzed for this article, we even see cases due to
this phenomenon where the main peak is not significantly different
between the groups, but the later isotope peaks are significantly
different.

Another way to gain statistical power would be to concentrate the
analysis on glycans. Kronewitter et al. (submitted for publication)
have constructed a theoretical N-linked glycan library and applied
it to human serum samples to develop an experimental serum glycan
profile. By starting with that profile, we should be able to use a
smaller set of P-values in the Benjamini–Hochberg method, which
would probably lead to a more sensitive analysis that is limited to
the compounds of interest—namely, glycans.

Even without these potential improvements, however, the
techniques we have developed appear to be effective in the analysis
of MALDI FT-ICR mass spectrometry data.
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